

Resisting The Temptation: Is It Ever The Right Choice To Use APIs To Integrate

Identity Providers With Your Business Processes?

Single Sign On (SSO) is an authentication process that allows a user to gain access

to multiple applications, such as signing on to a Google account to access other

websites. SSO has become an essential tenet of usability, giving employees, or

members, the ability to log in once, with one set of credentials, to get access to

all corporate or brand apps, websites, and data for which they have permission.

To maximize its effectiveness SSO requires a central directory, such as Okta’s

Universal Directory or Azure AD, to store and access the identities of those

belonging to an organisation. This allows their authentication request to be

validated, regardless of the individual access point.

The directory could also be used to automatically create the third-party accounts

required by a valid user, and then to easily close those accounts when that user

leaves the organisation. This automated provisioning can allow companies to

efficiently allocate expensive licenses and optimise costs. So, a new starter in the

marketing department could start using Salesforce on her first day, a software

developer could sign on to the app they are developing, and the company would

allocate the licences without any manual intervention.

But… life is sometimes messy, and it may be that a company has more than one

list of users that it would like to authenticate.

By Aidan Twomey

For example, a business might use an on-premises Active Directory (AD) to

authenticate workers in head office but rely on a cloud-based identity provider to

authenticate remote workers.

Choosing either one of these as a single source of truth would have drawbacks:

- consolidating all users into the AD might lead to unnecessary licences costs

for users who don’t require the benefits it provides, or

- moving everyone to the cloud-based provider may require disruptive

account migration for little discernible benefit.

The ideal solution could be to integrate both types of user with a single Identity-

as-a-service provider for a unified sign on experience that defers authentication

to the AD only for those that need it.

Vendor products are so good at handling these standard scenarios that we can

now consider Authentication and Access as a commodity. The model of out-of-

the-box configuration, complemented by custom code that calls APIs for

idiosyncratic cases, is very common. Presented with this scenario we might add

business specific attributes on an account and then use the API to populate them.

We could even use a web hook to call into some of our own code that resets a

password or deactivates a user completely. However, we should take care not to

try to lead the products where they don’t want to go. They may well defer to

another authenticator but will likely block a mix-and-match approach that tries to

invent a unique authentication process.

Let’s say we configure Okta to hand control of authentication over to Active

Directory, allowing organisations to leave password-reset rules in the hands of

AD. It is important to realise that once we have done this, Okta will limit the

lifecycle operations it will allow from API calls, and any calls to activate or

deactivate the user in Okta will be rejected. Okta will accept these status updates

only from AD.

Similarly, the natural home for personal information is the organisation’s HR

system. If the authentication system requires emails or phone numbers – in

order, for example, to perform multi-factor authentication – we should source

them from the appropriate system rather than duplicate the information. Access

management platforms like Adaptive or Okta have standard connectors with

common HR packages, making mapping between them easily configurable. Again,

once they have handed control over to another system, they take care not to

allow intermediate states.

Sample Case:

Okta can map values from the popular HR system Workday and allow it to be a profile

master. It will also synchronise the user lifecycle with Workday, as it’s appropriate for the

HR system to determine when people have joined and left the organisation.

However, following such a configuration, any customisation via the API will likely be

difficult. SSO to applications after users have left the organization, for example, presents a

problem if we try to do this through the authentication system rather than the HR system.

Once Workday has terminated a user, Okta will treat this as a message from God. Even if

we have configured Okta to do nothing, attempts to re-establish the connection with

Workday will be ignored.

The core purpose of automating access management is to optimise costs and

simplify license provisioning.

It is always tempting to regard an individual organisation as a special case and

believe that the ability to tweak processes using APIs permits bending access

management systems to existing processes. Sometimes there are unique

requirements intrinsic to a business but responding to these always raises the risk

of butting up against the reasonable restrictions the vendor systems have

imposed.

It is better to remember that identity and access management has become a

commodity, that standardisation brings with its efficiency and compliance, and

that it is ultimately cheaper and more effective to transform business processes

than to rely on APIs to transform systems.

Aiden Twomey is a Consultant at Amido

